
Extracted from:

Pragmatic Scala
Create Expressive, Concise, and Scalable Applications

This PDF file contains pages extracted from Pragmatic Scala, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Pragmatic Scala
Create Expressive, Concise, and Scalable Applications

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-054-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 11

Programming Recursions
The idea of recursion—solving a problem using solutions to its subproblems
—is alluring. Many algorithms and problems are recursive in nature. Once
we get the hang of it, designing solutions using recursion becomes highly
expressive and intuitive.

In general, the biggest catch with recursions is stack overflow for large input
values. But, thankfully that’s not so in Scala for specially structured recur-
sions. In this chapter we explore the powerful tail call optimization techniques
and the support classes baked into Scala and its library, respectively. Using
these easy-to-access facilities, you can implement highly recursive algorithms
and reap their benefits for really large input values without blowing out the
stack.

A Simple Recursion
Recursion is used quite extensively in a number of algorithms, like quick sort,
dynamic programming, stack-based operations…and the list goes on. Recur-
sion is highly expressive and intuitive. Sometimes we also use recursion to
avoid mutation. Let’s look at a use of recursion here. We’ll keep the problem
simple so we can focus on the issues with recursion instead of dealing with
problem or domain complexities.

ProgrammingRecursions/factorial.scala
def factorial(number: Int) : BigInt = {Line 1

if(number == 0)2

13

else4

number * factorial(number - 1)5

}6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vsscala2/code/ProgrammingRecursions/factorial.scala
http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

The factorial() function receives a parameter and returns a value of 1 if the
parameter is zero. Otherwise, it recursively calls itself to return a product of
that number times the factorial of the number minus one.

Writing a recursive function in Scala is much like writing any function, except
the return-type inference takes a vacation—Scala insists on seeing the return-
type explicitly for recursive functions. The reason for this is, since the function
calls itself in at least one path of execution, Scala doesn’t want to take the
burden of figuring out the return type.

Let’s run the factorial() function for a relatively small input value:

println(factorial(5))

The call will run quickly and produce the desired result, showing that Scala
handled the recursive call quite well:

120

Take a close look at the code on line 5 in the factorial() function; the last oper-
ation is the multiplication (*). In each call through the function, the value of
the number parameter will be held in a level of stack, while waiting for the
result from the subsequent call to arrive. If the input parameter is 5, the call
will get six levels deep before the recursion terminates.

The stack is a limited resource and can’t grow boundlessly. For a large input
value, simple recursion will run into trouble rather quickly. For example, try
calling the factorial() function with a large value, like so:

println(factorial(10000))

Here’s the fate of that call:

java.lang.StackOverflowError

It’s quite sad that such a powerful and elegant concept meets such a terrible
fate, incapable of taking on some real demand.

Most languages that support recursion have limitations on the use of recur-
sion. Thankfully, some languages, like Scala, have some nice support to avoid
these issues, as you’ll see next.

Tail Call Optimization (TCO)
Although many languages support recursion, some compilers go a step further
to optimize recursive calls. As a general rule, they convert recursions into
iterations as a way to avoid the stack overflow issue.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

Iterations don’t face the stack overflow issue that recursions are prone to,
but iterations aren’t as expressive. With the optimization, we can write highly
expressive and intuitive recursive code and let the compiler transform recur-
sions into safer iterations before runtime—see Structure and Interpretation of
Computer Programs [AS96] by Abelson and Sussman. Not all recursions,
however, can be transformed into iterations. Only recursions that have a
special structure—tail recursions—enjoy this privilege. Let’s explore this fur-
ther.

In the factorial() function, the final call on line 5 is multiplication. In a tail
recursion, the final call will be to the function itself. In that case, the function
call is said to be in the tail position. We’ll rework the factorial() function to use
tail recursion, but first let’s explore the benefit of doing so using another
example.

No Optimization for Regular Recursions
Scala performs optimizations for tail recursion but doesn’t provide any opti-
mization for regular recursions. Let’s see the difference with an example.

In the next example, the mad() function throws an exception when it meets a
parameter value of 0. Note that the last operation in the recursion is multipli-
cation.

ProgrammingRecursions/mad.scala
def mad(parameter: Int) : Int = {

if(parameter == 0)
throw new RuntimeException("Error")

else
1 * mad(parameter - 1)

}

mad(5)

Here’s an excerpt from the output of running the code:

java.lang.RuntimeException: Error
at Main$$anon$1.mad(mad.scala:3)
at Main$$anon$1.mad(mad.scala:5)
at Main$$anon$1.mad(mad.scala:5)
at Main$$anon$1.mad(mad.scala:5)
at Main$$anon$1.mad(mad.scala:5)
at Main$$anon$1.mad(mad.scala:5)
at Main$$anon$1.<init>(mad.scala:8)

The exception stack trace shows that we’re six levels deep in the call to the
mad() function before it blew up. This is regular recursion at work, just the
way we’d expect.

• Click HERE to purchase this book now. discuss

Tail Call Optimization (TCO) • 7

http://media.pragprog.com/titles/vsscala2/code/ProgrammingRecursions/mad.scala
http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

TCO to the Rescue
Not all languages that support recursion support TCO; for example, Java
doesn’t have support for TCO and all recursion, at the tail position or not,
will face the same fate of stack overflow for large input. Scala readily supports
TCO.

Let’s change the mad() function to remove the redundant product of 1. That’d
make the call tail recursive—the call to the function is the last, or in the tail
position.

def mad(parameter: Int) : Int = {
if(parameter == 0)

throw new RuntimeException("Error")
else

mad(parameter - 1)
}

mad(5)

Let’s look at the output from this modified version:

java.lang.RuntimeException: Error
at Main$$anon$1.mad(mad2.scala:3)
at Main$$anon$1.<init>(mad2.scala:8)

The number of recursive calls to the mad() function is the same in both the
versions. However, the stack trace for the modified version shows we’re only
one level deep, instead of six levels, when the exception was thrown. That’s
due to the handy work of Scala’s tail call optimization.

You can see this optimization firsthand by running the scala command with
the -save option, like so: scala -save mad.scala. This will save the bytecode in a file
named mad.jar. Then run jar xf mad.jar followed by javap -c -private Main\$\$anon\$1.class.
This will reveal the bytecode generated by the Scala compiler.

Let’s first look at the bytecode for the mad() function written as a regular
recursion:

private int mad(int);
Code:

0: iload_1
1: iconst_0
2: if_icmpne 15
5: new #14 // class

java/lang/RuntimeException
8: dup
9: ldc #16 // String Error

11: invokespecial #20 // Method

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

java/lang/RuntimeException."<init>":(Ljava/lang/String;)V
14: athrow
15: iconst_1
16: aload_0
17: iload_1
18: iconst_1
19: isub
20: invokespecial #22 // Method mad:(I)I
23: imul
24: ireturn

Toward the end of the mad() method, the invokeSpecial bytecode, marked as line
20, shows the call is recursive. Now, modify the code to make it tail recursive
and then take a peek at the generated bytecode using the earlier steps.

private int mad(int);
Code:

0: iload_1
1: iconst_0
2: if_icmpne 15
5: new #14 // class

java/lang/RuntimeException
8: dup
9: ldc #16 // String Error

11: invokespecial #20 // Method
java/lang/RuntimeException."<init>":(Ljava/lang/String;)V

14: athrow
15: iload_1
16: iconst_1
17: isub
18: istore_1
19: goto 0

Instead of the invokeSpecial we see a goto, which is a simple jump, indicating a
simple iteration instead of a recursive method call—that’s smart optimization
without much effort on our part.

Ensuring TCO
The compiler automatically transformed the tail recursion into an iteration.
This quiet optimization is nice, but a bit unsettling—there’s no immediate
visible feedback to tell. To infer, we’d have to either examine the bytecode or
check if the code fails for large inputs. Neither of those is appealing.

Thankfully, Scala has a nice little annotation to help program tail recursions
with intention. You can mark any function with the annotation tailrec and
Scala will verify at compile time that the function is tail recursive. If by mistake

• Click HERE to purchase this book now. discuss

Tail Call Optimization (TCO) • 9

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

the function is not tail recursive, and hence can’t be optimized, the compiler
will give a stern error.

To see this annotation at work, place it on the factorial() function, like so:

@scala.annotation.tailrec
def factorial(number: Int) : BigInt = {

if(number == 0)
1

else
number * factorial(number - 1)

}

println(factorial(10000))

Since this version of the factorial() function is a regular recursion and not a tail
recursion, the compiler will report an appropriate error:

error: could not optimize @tailrec annotated method factorial: it contains
a recursive call not in tail position

number * factorial(number - 1)
^

error found

Turning the regular recursion into tail recursion is not hard. Instead of per-
forming the multiplication operation upon return from the recursive call to
the method, we can pre-compute it and push the partial result as a parameter.
Let’s refactor the code for that:

@scala.annotation.tailrec
def factorial(fact: BigInt, number: Int) : BigInt = {

if(number == 0)
fact

else
factorial(fact * number, number - 1)

}

println(factorial(1, 10000))

The factorial() function in this modified version takes two parameters, with fact
—the partial result computed so far—as the first parameter. The recursive
call to the factorial() function is in the tail position. which complies with the
annotation at the top of the function. With this change, Scala won’t complain;
instead it will apply the optimization for the call.

Run this version of the function to see the output:

284625968091705451890641321211986889014805140170279923079417999427441134000
...

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

The TCO in Scala kicks in automatically for any tail recursive functions. The
annotation is optional and, when used, makes the intention clear and
expressive. It is a good idea to use the annotation. It ensures that the tail
recursion stays that way through refactorings and also conveys the intent to
fellow programmers who may come to refactor the code at a later time.

• Click HERE to purchase this book now. discuss

Tail Call Optimization (TCO) • 11

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

