
Extracted from:

Pragmatic Scala
Create Expressive, Concise, and Scalable Applications

This PDF file contains pages extracted from Pragmatic Scala, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Pragmatic Scala
Create Expressive, Concise, and Scalable Applications

Venkat Subramaniam

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-054-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 1

Exploring Scala
Scala is a great language for writing highly expressive and concise code
without sacrificing the power of static typing.

You can use Scala to build anything from small utility programs to entire
enterprise applications. You can program in the familiar object-oriented style,
and transition, when you like, to the functional style of programming. Scala
does not force developers down a single path; you can start on familiar grounds
and, as you get comfortable with the language, make use of features that can
help you become more productive and your programs more efficient.

Let’s quickly explore some of the features of Scala, and then take a look at a
practical example in Scala.

Scala Features
Scala, short for Scalable Language, is a hybrid functional programming lan-
guage. It was created by Martin Odersky and was first released in 2003 (for
more information, see “A Brief History of Scala” in Appendix 2, Web Resources,
on page ?). Here are some of the key features of Scala:

• It supports both an imperative style and a functional style.
• It is purely object-oriented.
• It enforces sensible static typing and type inference.
• It is concise and expressive.
• It intermixes well with Java.
• It is built on a small kernel.
• It is highly scalable, and it takes less code to create high-performing

applications.
• It has a powerful, easy-to-use concurrency model.

You’ll learn more about each of these features throughout this book.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

More with Less
One of the first differences you’ll find as you ease into Scala is that you can
do more with a lot less code in Scala than in Java. The conciseness and
expressiveness of Scala will shine through every line of code you write. You’ll
start applying Scala’s key features and soon they’ll make your routine pro-
graming quite productive—Scala simplifies everyday programming.

To get a taste of Scala’s power and its benefits, let’s look at a quick example
where we make use of many of the features. Even though the syntax may
appear unfamiliar at this time, key in the code and play with it as you read
along. The more you work with the code, the quicker it becomes familiar.

If you’ve not installed Scala yet, please see Appendix 1, Installing Scala, on
page ? for the steps. Now to the first code example:

Introduction/TopStock.scala
val symbols = List("AMD", "AAPL", "AMZN", "IBM", "ORCL", "MSFT")Line 1

val year = 20142

3

val (topStock, topPrice) =4

symbols.map { ticker => (ticker, getYearEndClosingPrice(ticker, year)) }5

.maxBy { stockPrice => stockPrice._2 }6

7

printf(s"Top stock of $year is $topStock closing at price $$$topPrice")8

If this is your first look at Scala, don’t be distracted by the syntax. Focus on
the big picture for now.

Given a list of symbols, the code computes the highest priced stock among
them. Let’s tear apart the code to understand it.

Let’s look at the main parts of the code first. On line 1, symbols refers to an
immutable list of stock ticker symbols and, on line 2, year is an immutable
value. On lines 5 and 6, we use two powerful, specialized iterators—the map()
function and maxBy() function. In Java we’re used to the term method, to refer
to a member of a class. The word function is often used to refer to a procedure
that’s not a member of a class. However, in Scala we use the words method
and function interchangeably.

Each of the two iterators take on two separate responsibilities. First, using
the map() function, we iterate over the ticker symbols to create another list
with pairs or tuples of tickers and their closing price for the year 2014. The
resulting list of tuples is of the form List((symbol1, price1), (symbol2, price2), ...).

The second iterator works on the result of the first iterator. maxBy() is a spe-
cialized iterator on the list that picks the first highest value. Since the list is

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/vsscala2/code/Introduction/TopStock.scala
http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

a collection of tuples (pairs) of values, we need to tell maxBy() how to compare
the values. In the code block attached to maxBy() we indicate that given a tuple,
we’re interested in its second property (represented by _2): the price value.
That was very concise code, but quite a bit is going on there. Let’s visualize
the actions in the following figure:

AMD

AAPL

AMZN

IBM

ORCL

MSFT
map

(AMD, 2.67)

(AAPL, 110.38)

(AMZN, 310.35)

(ORCL, 44.97)

(MSFT, 46.45)

(IBM, 160.44)

return (symbol, price)

maxBy

(AMZN, 310.35)

compare

As we see in the figure, map() applies the given function or operation—fetching
price—for each symbol to create the resulting list of symbols and their prices.
maxBy() then works on this subsequent list to create a single result of the
symbol with the highest price.

The previous code is missing the getYearEndClosingPrice() function; let’s take a
look at that next:

Introduction/TopStock.scala
def getYearEndClosingPrice(symbol : String, year : Int) = {

val url = s"http://ichart.finance.yahoo.com/table.csv?s=" +
s"$symbol&a=11&b=01&c=$year&d=11&e=31&f=$year&g=m"

val data = io.Source.fromURL(url).mkString
val price = data.split("\n")(1).split(",")(4).toDouble
price

}

Even though the syntax may not yet be familiar, this code should be easy to
read. In this short and sweet function, we send a request to the Yahoo Finance
web service and receive the stock data in CSV format. We then parse the data,
to extract and return the year-end closing price. Don’t worry about the format
of the data received right now; that’s not important for what we’re focusing
on here. In Chapter 15, Creating an Application with Scala, on page ?, we’ll
revisit this example and provide all the details about talking to the Yahoo
service.

• Click HERE to purchase this book now. discuss

More with Less • 7

http://media.pragprog.com/titles/vsscala2/code/Introduction/TopStock.scala
http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

To run the previous example, save the two pieces of code in a file named
TopStock.scala and type the command

scala TopStock.scala

You’ll see a result like this:

Top stock of 2014 is AMZN closing at price $310.35

Spend a few minutes tracing through the code to make sure you understand
how this is working. While you’re at it, see how the method computed the
highest price without ever explicitly changing any variable or object. The entire
code is totally dealing with only immutable state; no variable or object was
tortured, err…changed, after it was created. As a result, you wouldn’t have
to be concerned about any synchronization and data contention if you were
to run it in parallel.

We’ve fetched data from the web, done some comparisons, and yielded the
desired result—nontrivial work, but it took only a few lines of code. This Scala
code will stay concise and expressive even if we ask some more of it. Let’s
take a look.

In the example, we’re fetching data for each symbol from Yahoo, which involves
multiple calls over the network. Assume the network delay is d seconds and
we’re interested in analyzing n symbols. The sequential code will take about
n * d seconds. Since the biggest delay in the code will be network access to
fetch the data, we can reduce the time to about d seconds if we execute the
code to fetch data for different symbols in parallel. Scala makes it trivial to
turn the sequential code into parallel mode, with only one small change:

symbols.par.map { ticker => (ticker, getYearEndClosingPrice(ticker, year)) }
.maxBy { stockPrice => stockPrice._2 }

We inserted a call to par; that’s pretty much it. Rather than iterating sequen-
tially, the code will now work on each symbol in parallel.

Let’s highlight some nice qualities of the example we wrote:

• First, the code is concise. We took advantage of a number of powerful
Scala features: function values, (parallel) collections, specialized iterators,
values, immutability, and tuples, to mention a few. Of course, I have not
introduced any of these yet; we’re only in the introduction! So, don’t try
to understand all of that at this moment, because we have the rest of the
book for that.

• We used functional style—function composition, in particular. We trans-
formed the list of symbols to a list of tuples of symbols and their prices

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

using the map() method. Then we transformed that into the desired value
using the maxBy() method. Rather than spending effort on controlling the
iteration—as we’d do in imperative style—we ceded control to the library
of functions to get the job done.

• We employed concurrency without pain. There was no need for wait() and
notify() or synchronized. Since we handled only immutable state, we did not
have to spend time or effort (and sleepless nights) with data contention
and synchronization.

These benefits have removed a number of burdens from our shoulders. For
one, we did not have to struggle to make the code concurrent. For an
exhaustive treatise about how painful threads can be, refer to Brian Goetz’s
Java Concurrency in Practice [Goe06]. With Scala, we can focus on application
logic instead of worrying about the low-level concerns.

We saw a concurrency benefit of Scala. Scala concurrently (pun intended)
provides benefits for single-threaded applications as well. Scala provides the
freedom to choose and mix two styles of programming: the imperative style
and the assignment-less pure functional style. With the ability to mix these
two styles, in Scala we can use the style that’s most appropriate in the scope
of a single thread. For multithreading or safe concurrency, we would lean
toward the functional style.

What we treat as primitives in Java are objects in Scala. For example, 2.toString()
will generate a compilation error in Java. However, that is valid in Scala—
we’re calling the toString() method on an instance of Int. At the same time, in
order to provide good performance and interoperability with Java, Scala maps
the instances of Int to the int representation at the bytecode level.

Scala compiles down to bytecode. We can run it the same way we run pro-
grams written using the Java language or we can also run it as a script. We
can also intermix it well with Java. We can extend Java classes from Scala
classes, and vice versa. We can also use Java classes in Scala and Scala
classes in Java. We can program applications using multiple languages and
be a true Polyglot Programmer—see “Polyglot Programming” in Appendix 2,
Web Resources, on page ?.

Scala is a statically typed language, but, unlike Java, it has sensible static
typing. Scala applies type inference in places it can. Instead of specifying the
type repeatedly and redundantly, we can rely on the language to learn the
type and enforce it through the rest of the code. We don’t work for the compil-
er; instead, we let the compiler work for us. For example, when we define var
i = 1, Scala immediately figures that the variable i is of type Int. Now, if we try

• Click HERE to purchase this book now. discuss

More with Less • 9

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

to assign a String to that variable as in i = "haha", Scala will give an error, like
this:

sample.scala:2:
error: type mismatch;
found : String("haha")
required: Int

i = "haha" //Error
^

one error found

Later in this book we’ll see how type inference works beyond such simple
definitions and transcends further to function parameters and return values.

Scala favors conciseness. Placing a semicolon at the end of statements is
second nature to Java programmers. Scala provides a break for your right
pinky finger from the years of abuse it has taken—semicolons are optional
in Scala. But, that is only the beginning. In Scala, depending on the context,
the dot operator (.) is optional as well, and so are the parentheses. Thus,
instead of writing s1.equals(s2);, we can write s1 equals s2. By losing the semicolon,
the parentheses, and the dot, code gains a high signal-to-noise ratio. It
becomes easier to write domain-specific languages.

One of the most interesting aspects of Scala is scalability. We can enjoy a
nice interplay of functional programming constructs along with the powerful
set of libraries, to create highly scalable, concurrent applications and take
full advantage of multithreading on multicore processors.

The real beauty of Scala is in what it does not have. Compared to Java, C#,
and C++, the Scala language has a very small kernel of rules built into it. The
rest, including operators, are part of the Scala library. This distinction has a
far-reaching consequence. Because the language does not do more, we can
do a lot more with it. It’s truly extensible, and its library serves as a case
study for that.

The code in this section showed how much we can get done with only a few
lines of code. Part of that conciseness comes from the declarative style of
functional programming—let’s take a closer look at that next.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/vsscala2
http://forums.pragprog.com/forums/vsscala2

