
Extracted from:

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

This PDF file contains pages extracted from Programming Ecto, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

Darin Wilson
Eric Meadows-Jönsson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Kim Cofer
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-282-4
Book version: P1.0—April 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

At the end of the last chapter, we saw how schemas provide a quick method
for inserting new records into the database, even with associated records.
But a database is only as good as the quality of the data that it contains, so
we need to be careful about the modifications we make to that data. The
Ecto.Changeset module provides a rich data structure and a wide array of func-
tions that helps us manage making changes safely and securely.

In this chapter, we will take a deep dive into the world of changesets. We will
start by taking a high-level look at the process of making a change, then look
at each step of the process in detail: casting and filtering user-provided
data, validating the data, and capturing errors. Finally, we will look at how
changesets help us with the often-tricky process of working with associations
and embeds.

Introducing Changesets
Changesets manage the update process by breaking it into three distinct
stages: casting and filtering user input, validating the input, then sending
the input to the database and capturing the result. If you think of it as a
pipeline, it would look something like this:

data
|> cast_and_filter_fields
|> validate_change
|> validate_another_change
|> send_to_database

We’ll look at each step in detail, but here’s what the process looks like in
code. The following example inserts a new Artist record, based on data supplied
by the user:

priv/examples/changeset_01.exs
import Ecto.Changeset

params = %{name: "Gene Harris"}
changeset =

%Artist{}
|> cast(params, [:name])
|> validate_required([:name])

case Repo.insert(changeset) do
{:ok, artist} -> IO.puts("Record for #{artist.name} was created.")
{:error, changeset} -> IO.inspect(changeset.errors)

end

As this example demonstrates, changesets help us with the entire life cycle
of making a change, starting with raw data, and ending with the operation
succeeding or failing at the database level. Let’s now zoom in on each step.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_01.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

Casting and Filtering
The first step is to take the raw input data that you want to apply to the
database and generate an Ecto.Changeset struct. We call this “casting and filter-
ing” because we perform any needed type casting operations (for example,
turning a string into an integer), and we filter out any values we don’t want
to use. You can do this two different ways, depending on where your data is
coming from. We’ll look at both in the following sections.

Creating Changesets Using Internal Data
If the data is internal to the application (that is, you’re generating the data
yourself in your application code), you can create a changeset using the
Ecto.Changeset.change function. Here’s how you would create a changeset that
inserts a new Artist record:

priv/examples/changeset_02.exs
import Ecto.Changeset

changeset = change(%Artist{name: "Charlie Parker"})

The import statement makes all of the functions in Ecto.Changeset available to
our code. For brevity, we won’t include this in the rest of the examples.

To make changes to an existing record, the process is similar, but instead of
passing in a new struct, we use a record fetched from Repo:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
changeset = change(artist)

We can add the data we’d like to change as optional arguments to the change
function. This is how we might change the name field to something more formal:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
changeset = change(artist, name: "Robert Hutcherson")

At this point, changeset is just a data structure in memory—no communication
with the database has happened yet. As we’ve seen with the Repository pattern,
nothing happens with the database until we get Repo involved. If we wanted
to commit the change, we’d need to call Repo.update(changeset) and check the
result to see if it succeeded.

Before we do that, we can take a peek at the changes that will be applied.
The changes field of our changeset tells us what’s going to be updated:

changeset.changes
#=> %{name: "Robert Hutcherson"}

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_02.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

We can also use the change function to add more changes to a changeset that’s
already been created—instead of passing in an Artist struct as the first argu-
ment, we can pass another changeset. Using the changeset value we created
in the last code example, we could add the artist’s birth date to the list of
items we’re going to update:

changeset = change(changeset, birth_date: ~D[1941-01-27])

And of course, it’s possible to add both changes into a single change call:

artist = Repo.get_by(Artist, name: "Bobby Hutcherson")
changeset = change(artist, name: "Robert Hutcherson",

birth_date: ~D[1941-01-27])

In either case, calling changes will now show both of the values that we are
updating:

changeset.changes
#=> %{birth_date: ~D[1941-01-27], name: "Robert Hutcherson"}

The data we’ve been using so far has been generated in our code. In most
cases however, the data you want to apply will be coming from outside of the
controlled environment of your own code: forms your application presents to
end users, API calls, command-line parameters, CSVs or other data files, and
so forth. To deal with this potentially unruly data, Ecto provides the cast
function for creating changesets.

Creating Changesets Using External Data

When working with data coming from external sources, it’s important to take
extra care. The cast function plays a similar role to change, as it’s used to take raw
data and return a Changeset struct, but it’s got a few extra features to help
make sure you’re getting only the data you want.

The cast function has three required arguments. The first is the same as change:
it should be a data structure representing the record you want to apply your
changes to. This could be a new schema struct (for example %Artist{}), a schema
struct representing a record fetched from the database, or another changeset.

The second argument is a map containing raw data that you want to apply.
The third is a list of the parameters that you’ll allow to be added to the
changeset. It acts like a filter: only parameters specified in the list will be
added to the changeset. The rest will be discarded.

Here is how we could create a changeset for a new Artist record using user-
supplied parameters. (In the following examples, we’ll use the params variable
to represent values supplied by the user.)

• Click HERE to purchase this book now. discuss

Casting and Filtering • 7

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

priv/examples/changeset_03.exs
values provided by the user
params = %{"name" => "Charlie Parker", "birth_date" => "1920-08-29",

"instrument" => "alto sax"}

changeset = cast(%Artist{}, params, [:name, :birth_date])
changeset.changes
#=> %{birth_date: ~D[1920-08-29], name: "Charlie Parker"}

Take a close look at the result of the changes call, and you’ll see what cast has
done for us. First, the instrument value provided in the params map does not
appear in the changeset. This is because we only specified :name and :birth_date
in the list of allowed values, so Ecto dropped the instrument field for us. This
can be useful when importing data from sources you don’t control. If you
were importing data from a CSV, for example, there could be extra columns
of data that you don’t need. This setting helps you get rid of them.

Second, the call to cast converted the birth_date value from the string "1920-08-29"
to an Elixir Date struct. As the name suggests, cast will perform type casting
when turning the raw input into a changeset, whenever it can. In this case,
our Artist schema defined birth_date as the :date type, so Ecto parsed the string
value into a Date when creating the changeset. This worked because we received
the date in a standard format. If we got an unknown date format, Ecto would
not be able to cast it and the changeset would be invalid. We’ll talk more
about validating changesets in the next section.

By default, the cast function will treat the empty string "" as nil when creating
the changeset. But there may be times when you want other values turned
into nil as well. For example, when working with spreadsheets, you’ll often
see data that looks like this:

params = %{"name" => "Charlie Parker", "birth_date" => "NULL"}

Instead of getting an empty cell, you get the string "NULL." We can tell Ecto that
we want to consider "NULL" an empty value, by adding the empty_values option
to cast:

params = %{"name" => "Charlie Parker", "birth_date" => "NULL"}
changeset = cast(%Artist{}, params, [:name, :birth_date],

empty_values: ["", "NULL"])
changeset.changes
#=> %{name: "Charlie Parker"}

By adding "NULL" to the empty_values option, we were able to treat the birth_date
value as empty, and Ecto dropped it from the list of changes. You can specify
as many different values as you need, but don’t forget to include "" if you want
to convert empty strings as well.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/changeset_03.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

