
Extracted from:

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

This PDF file contains pages extracted from Programming Ecto, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

Darin Wilson
Eric Meadows-Jönsson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Kim Cofer
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-282-4
Book version: P1.0—April 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 9

Testing with Sandboxes
This chapter will show you how to turbo-charge your test suite with sandboxes.

Sandboxes allow you to run your database tests concurrently, while still
keeping the database state of each test isolated from the others. The secret
sauce underlying this feature is a special pool of database connections with
an ownership mechanism that allows you to control how connections are
used and shared between processes. Using the sandbox can significantly
reduce the time it takes to run your test suite, so you should take advantage
of this feature when you can.

We’ll walk through the basics of setting up sandboxes, and show you what
to do if your tests need connections shared across multiple processes. By the
end, your machine will be zipping through your test suite at top speed—you’ll
need to find another excuse to go get coffee.

Setting Up an Async Test
To use the sandbox, change your Repo configuration to use the sandbox pool.
We only want to do this when we’re in our test environment, so make the
following change in config/test.exs and only there:

priv/examples/sandboxes_01.exs
config :music_db, MusicDB.Repo,

pool: Ecto.Adapters.SQL.Sandbox
other settings here

By changing the pool: setting, we’re telling Ecto that we will not be using the
default connection pool and instead give the sandbox full control over how
connections are checked out and used by processes.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/sandboxes_01.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

Next, we need to set our sandbox to the correct ownership mode. We’ll cover
this setting in more detail later, but for now, add this line to test/test_helper.exs:

Ecto.Adapters.SQL.Sandbox.mode(MusicDB.Repo, :manual)

Now we’re ready to write our test case. Create a file called test/album_test.exs,
and add the following code:

defmodule MusicDB.AlbumTest do
use ExUnit.Case, async: true

setup do
:ok = Ecto.Adapters.SQL.Sandbox.checkout(MusicDB.Repo)

end

test "insert album" do
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
new_album = MusicDB.Repo.get!(MusicDB.Album, album.id)
assert new_album.title == "Giant Steps"

end
end

Notice that we set async: true on the first line of the test. This tells Elixir that
it’s safe to run this test concurrently with other tests.

We also added a setup block that calls the checkout function on the sandbox.
This is how we obtain the database connection that we’ll be using throughout
our test. We need to make this call because we set the ownership mode to
:manual in our test helper, but that’s not the case for all of the ownership
modes. Let’s take a look at the different ownership modes we can use.

Changing the Ownership Mode
The ownership mode affects the way the sandbox interacts with different
processes. You can use three different modes: :auto, :manual, and :shared.

With :auto the sandbox functions like a normal pool: each process gets its own
connection from the pool and has exclusive access to the connection while it
is checked out. And, like a normal pool, the connections are checked out
automatically when your code needs to run a database operation, and checked
back in when the operation completes. The connection is still in a sandboxed
transaction that is rolled back when the connection is checked in, but you
can’t be sure that you’ll get the same connection each time you access the
database. This means that there’s no guarantee that our calls to insert! and
get! in our test case will use the same connection; if they use different connec-
tions, the get! call will fail when it can’t find the album we inserted in the
other connection.

Chapter 9. Testing with Sandboxes • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

Use :auto when you don’t need to retain the state of your database throughout
your test case. For example, if you’re only making one database call in the
test, or the result of a database call isn’t dependent on the result of previous
database calls, :auto is a good choice. This will likely be rare, however.

In :manual mode, which we used in the previous example, the connection is
explicitly checked out in the setup block; and is not checked back in until the
test exits. In this mode we can be sure that we’re only using a single connec-
tion through our whole test. Any changes we make in one part of the test will
be available to all the other parts, and everything will get rolled back at the
end of the test.

Use :manual when you’re making multiple database calls in your test case, and
later calls are dependent on the result of earlier calls. It’s also important that
the database calls are run from the same Elixir process.

For tests that use multiple processes, Ecto has :shared mode. So far, our
examples have only used one process, but consider an example like this:

priv/examples/sandboxes_02.exs
test "insert album" do

task = Task.async(fn ->
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

In this somewhat contrived example, we’re running a database operation in
a separate process using Task.async. If we tried to run this test in manual or
auto mode, it would crash with the error:

** (DBConnection.OwnershipError) cannot find ownership process
for #PID<0.165.0>.

This is because the process that’s trying to connect to the database (which
we initiated with Task.async) was not the process that checked out the connec-
tion. With manual or auto, only the process that checked out the connection
can use it.

We can work around this limitation with :shared mode. In this mode, the con-
nection is checked out explicitly like in manual mode but the connection is
available to all processes. So if you have a test that uses multiple processes,
shared mode allows a single checked-out connection to be used by all of them,
and you can be sure the database state is consistent throughout the test.

• Click HERE to purchase this book now. discuss

Changing the Ownership Mode • 7

http://media.pragprog.com/titles/wmecto/code/priv/examples/sandboxes_02.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

When working with shared mode, the setup in test/album_test.exs is a little different:

setup do
:ok = Ecto.Adapters.SQL.Sandbox.checkout(MusicDB.Repo)
Ecto.Adapters.SQL.Sandbox.mode(MusicDB.Repo, {:shared, self()})

end

In addition to setting the mode as :shared, we need to provide the process that’s
checking out the connection, so we pass in self() along with :shared as a tuple.

This seems like a good solution, but it comes at a cost: tests that use shared
mode cannot be safely run concurrently. The connection is shared among all
processes, so any test running concurrently could pollute the database state
and cause other tests to fail. As a result, if you’re using shared mode, you need
to disable concurrency by removing async: true from use ExUnit.Case, async: true.

This is a reasonable trade-off if you don’t have a large test suite. It’s relatively
easy to set up shared mode and not running a few tests concurrently won’t
be a huge time hit. But if you have a large test suite and need to run much
of it in shared mode, this could be a significant setback. Fortunately, Ecto
provides us with a way out. In the next section, we’ll see how to get the best
of both worlds: connections shared between multiple processes, and fast,
concurrent tests.

Safely Sharing Connections with Allowances
To work around the limitations of shared mode, Ecto provides a mechanism
called allowances. This allows us to pick and choose which processes we
share our database connection with. We can keep a single database connection
for all processes needed for our test, and be sure that the database state is
isolated from any other tests running concurrently.

Let’s go back to the test we looked at in the last section:

priv/examples/sandboxes_03.exs
test "insert album" do

task = Task.async(fn ->
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

As we mentioned earlier, running this test in manual or auto mode will cause
a crash, because the process in Task.async does not have access to the connection
checked out by the test process. We need to “allow” the task to use the test

Chapter 9. Testing with Sandboxes • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/sandboxes_03.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

process as the ownership process. We can do that with Ecto.Adapters.SQL.Sand-
box.allow/4:

test "insert album" do
parent = self()
task = Task.async(fn ->

Ecto.Adapters.SQL.Sandbox.allow(MusicDB.Repo, parent, self())
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

The call to allow ensures that the test and task processes share the same
connection.

It would also be possible to call allow/4 from the test process, rather than the
async process, but this would introduce a race condition: it’s possible that the
async process would call MusicDB.Repo.insert! before allow has finished executing.
To prevent this, we would have to synchronize the start of the async process
and the call to allow. The synchronization could look something like this:

test "insert album" do
task = Task.async(fn ->

receive do
:continue -> :ok

end
album = MusicDB.Repo.insert!(%MusicDB.Album{title: "Giant Steps"})
album.id

end)

Ecto.Adapters.SQL.Sandbox.allow(MusicDB.Repo, self(), task.pid)
send(task.pid, :continue)

album_id = Task.await(task)
assert MusicDB.Repo.get(MusicDB.Album, album_id).title == "Giant Steps"

end

That works, but it does introduce some complexity into the code, so you might
find it easier to call allow from within the collaborating process, as we did in
the first example.

As powerful as allowances are, it may not always be possible to use them:
your code may be structured such that it would be complicated to add them,
or you may be using third-party libraries that aren’t aware of the Ecto sand-
box. In those cases you can fall back to :shared mode, but remember to run
those tests synchronously by removing the :async option on use ExUnit.Case.

• Click HERE to purchase this book now. discuss

Safely Sharing Connections with Allowances • 9

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

Wrapping Up
Sandboxes are a powerful feature that can help keep your test suite running
at high speed. We covered the basics here, but it’s possible that you’ll run
into some concurrency hiccups, depending on the complexity of your app. If
you do run into issues, check out Ecto’s documentation for more details on
how to troubleshoot.1

1. https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html

Chapter 9. Testing with Sandboxes • 10

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

