
Extracted from:

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

This PDF file contains pages extracted from Programming Ecto, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Ecto
Build Database Apps in Elixir for Scalability and Performance

Darin Wilson
Eric Meadows-Jönsson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Kim Cofer
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-282-4
Book version: P1.0—April 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Running Transactions with Functions
The first way to run Repo.transaction is by passing in a function containing the
operations you’d like to run within the transaction. This can be an anonymous
function or a named function defined elsewhere. This seems like a good
idea—we’re functional programmers, and this approach will let us keep using
functions. Let’s try it out.

To illustrate how this works, we’re going to introduce a new database table,
and a module to go with it. Imagine that we’ve decided that we want to keep
a log of the changes we make to our database. Every time we make a change,
we’ll insert a new record into a logs table. We’ll use functions in the MusicDB.Log
module to create changesets for logging the different operations that we want
to perform. It’s not too fancy, but it will suffice for our purposes here. Take
a peek at the lib/music_db/log.ex module if you’re curious to see the details.

Here’s what we would do if we wanted to insert a new Artist record, and log
the change:

priv/examples/transactions_01.exs
artist = %Artist{name: "Johnny Hodges"}
Repo.insert(artist)
Repo.insert(Log.changeset_for_insert(artist))

That would work most of the time, but we want to be absolutely certain that
both of these inserts succeed: we don’t want to add a new Log record if the
Artist insert didn’t go through, and if the Log insert fails, we want to back out
the Artist insert. We can do this by wrapping the two calls in an anonymous
function, and passing that function directly to the Repo.transaction function:

artist = %Artist{name: "Johnny Hodges"}
Repo.transaction(fn ->

Repo.insert!(artist)
Repo.insert!(Log.changeset_for_insert(artist))

end)
#=> {:ok, %MusicDB.Log{ ...}}

When a transaction succeeds (as this one did), the transaction function returns
a tuple consisting of :ok and the return value of the passed-in function. In
this case, the last line of the function inserts the Log struct, so we get the
return value of that operation: %MusicDB.Log{...}.

If an error occurs anywhere in the transaction, the database rolls back all of
the changes that it performed up to that point, and the transaction function
itself raises the error. We can demonstrate this by trying to insert nil for the
second operation:

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_01.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

artist = %Artist{name: "Ben Webster"}
Repo.transaction(fn ->

Repo.insert!(artist)
Repo.insert!(nil) # <-- this will fail

end)
#=> ** (FunctionClauseError) no function clause matching in
#=> Ecto.Repo.Schema.insert/4

Elixir rightfully complained about our attempt to insert nil and raised the
error. We expect that any changes performed within transaction got rolled back,
and we can verify that by making sure no Artist record now exists for Ben
Webster:

Repo.get_by(Artist, name: "Ben Webster")
=> nil

Our transaction worked. The failure of the second insert forced a rollback of
the first insert. We’re back to where we were before we started.

Forcing a Rollback Within a Transaction
Notice that we’ve been using insert! with a bang, rather than insert. The two
functions are identical, except for one crucial difference: insert will return {:error,
value} if the insert fails, but insert! will raise an error. This is a convention that’s
used in many Elixir libraries, and it’s essential when executing transaction with
a function.

The documentation for Repo.transaction says this:

If an unhandled error occurs the transaction will be rolled back and the error will
bubble up from the transaction function.

This means that only unhandled errors will trigger the rollback behavior—a
return value of {:error, value} from one of the operations isn’t going to cut it.

We can demonstrate this by rewriting our transaction so we’re inserting
changesets rather than schema structs. If we pass an invalid changeset to
insert (without the bang) it will return an :error tuple without raising an error.
We’ll add some debug output so we can see exactly what’s going on:

priv/examples/transactions_02.exs
cs =

%Artist{name: nil}
|> Ecto.Changeset.change()
|> Ecto.Changeset.validate_required([:name])

Repo.transaction(fn ->
case Repo.insert(cs) do

{:ok, _artist} -> IO.puts("Artist insert succeeded")
{:error, _value} -> IO.puts("Artist insert failed")

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_02.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

end
case Repo.insert(Log.changeset_for_insert(cs)) do

{:ok, _log} -> IO.puts("Log insert succeeded")
{:error, _value} -> IO.puts("Log insert failed")

end
end)

We start by creating an intentionally invalid changeset: we pass in nil for the
name field, then add a validation declaring that name is required. This should give
us :error when we try to insert it. Then we try to insert the changeset and a sep-
arate Log changeset within the transaction. The case statements help us to see
how each of those operations fare. Here’s what happens when we run this:

=> Artist insert failed
=> Log insert succeeded
=> {:ok :ok}

This is exactly what we don’t want when working with transactions. The first
insert failed, but because we used insert rather than insert! the function returned
the tuple {:error, _value} instead of raising an error. If we want to trigger a roll-
back, we have to raise an Elixir error, and passing an invalid changeset to
insert won’t do that. You have to use insert! (with a bang) instead. Because we
used insert, the transaction continued, and the second insert succeeded. Our
database is now in an incorrect state: we have a log record for an insert that
didn’t actually happen.

One workaround for this behavior is to use the Repo.rollback function. Calling this
function will abort the transaction and roll back any changes made so far, just
as if an error had occurred. When you call rollback, the transaction function returns
{:error, value} where value is the argument passed to the rollback function. With this
in mind, we can rewrite the previous example to get the behavior we want:

cs = Ecto.Changeset.change(%Artist{name: nil})
|> Ecto.Changeset.validate_required([:name])

Repo.transaction(fn ->
case Repo.insert(cs) do

{:ok, _artist} -> IO.puts("Artist insert succeeded")
{:error, _value} -> Repo.rollback("Artist insert failed")

end
case Repo.insert(Log.changeset_for_insert(cs)) do

{:ok, _log} -> IO.puts("Log insert succeeded")
{:error, _value} -> Repo.rollback("Log insert failed")

end
end)
=> {:error, "Artist insert failed"}

• Click HERE to purchase this book now. discuss

Running Transactions with Functions • 7

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

That’s better. This time, the first insert failed as expected so the rest of the
transaction didn’t run. The transaction function returned an :error tuple with the
value we provided.

Executing Non-Database Operations Within a Transaction
With this knowledge in hand, we can see an opportunity to expand transac-
tions to include non-database operations. Imagine that our app uses an
external search engine, such as Elasticsearch. Whenever we change the
database, we want to update our search engine as well. But it’s important to
keep the database and the search engine in sync: if the database changes
fail, we don’t want to update the search engine, and if the search engine
update fails, we want to roll back the changes to the database.

To explore this scenario, our MusicDB app has a MusicDB.SearchEngine module
that handles search engine updates via its update function. This is just a
placeholder module—our sample app doesn’t include a real search engine,
so the module’s functions just simulate the behavior.

To update the search engine along with the changes to the database, we call
the appropriate functions from within the transaction:

priv/examples/transactions_03.exs
artist = %Artist{name: "Johnny Hodges"}
Repo.transaction(fn ->

artist_record = Repo.insert!(artist)
Repo.insert!(Log.changeset_for_insert(artist_record))
SearchEngine.update!(artist_record)

end)

Provided that our update! function raises an error if it fails, this will do what
we want: if either of the insert! calls fail, the search engine update won’t run.
And if the search engine update fails, Ecto will roll back the database changes
and the transaction function will bubble up the error.

Of course, Ecto has no knowledge of how our search engine works, so it would
be impossible for it to roll back changes to the search engine. This means
that you should run all of your database operations first, then run any non-
database operations: you don’t want those to run until you’re sure the database
operations succeeded.

Drawbacks of Using Functions
Running transactions with functions works reasonably well, but it has some
drawbacks.

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_03.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

The most serious problem, demonstrated in the last section, is that we have
to be careful that we call Repo functions in the correct way. Calling insert rather
than insert! broke the behavior we were trying to achieve. The compiler can’t
help us with something like this, so one missed character could put our
database into a bad state.

Another problem is that anonymous functions are not composable: this limits
their reusability. Our last example made changes to an Artist record, saved a log
of the change, and updated the search engine. It’s possible that in another part
of the app we might want to update the artist’s albums along with the artist
record. It would be nice to take the logic we already have and just add to it,
but our anonymous function doesn’t lend itself to being extended in that way.

There’s still another problem. We don’t have good visibility into exactly what
went wrong when a transaction fails. Recall how much code we had to add
when we wanted to see where a failure occurred:

priv/examples/transactions_04.exs
cs = Ecto.Changeset.change(%Artist{name: nil})

|> Ecto.Changeset.validate_required([:name])
Repo.transaction(fn ->

case Repo.insert(cs) do
{:ok, _artist} -> IO.puts("Artist insert succeeded")
{:error, _value} -> Repo.rollback("Artist insert failed")

end
case Repo.insert(Log.changeset_for_insert(cs)) do

{:ok, _log} -> IO.puts("Log insert succeeded")
{:error, _value} -> Repo.rollback("Log insert failed")

end
end)

That’s a lot of extra code for only two Repo calls.

Fortunately, there’s a better way. The Ecto.Multi module can help us out with
all of these issues. We’ll explore that option in the next section.

Running Transactions with Ecto.Multi
The other way to use Repo.transaction is pass in an Ecto.Multi struct, rather than
a function. Ecto.Multi allows you to group your database operations into a data
structure. When handed to the transaction function, the Multi’s operations run
in order, and if any of them fail, all of the others are rolled back.

Let’s take a look at an earlier example where we ran a transaction with an
anonymous function:

priv/examples/transactions_05.exs
artist = %Artist{name: "Johnny Hodges"}

• Click HERE to purchase this book now. discuss

Running Transactions with Ecto.Multi • 9

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_04.exs
http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_05.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

Repo.transaction(fn ->
Repo.insert!(artist)
Repo.insert!(Log.changeset_for_insert(artist))

end)

Here’s how we can rewrite it using Multi:

alias Ecto.Multi

artist = %Artist{name: "Johnny Hodges"}
multi =

Multi.new
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))

Repo.transaction(multi)

There’s a lot here, so let’s walk through it.

We start by creating a new Multi with the new function. The Ecto team recom-
mends using this approach rather than trying to create the struct directly;
that is, don’t try to write something like multi = %Multi{}. The exact structure
of Ecto.Multi is subject to future change. Calling new ensures that the struct will
come back to you properly initialized. If you create the struct directly, you’re
on your own.

We then add the two insert operations by piping the Multi into the insert function.
The Ecto.Multi module has several functions that mirror the database operation
functions in Repo: insert, update, delete, and so on. Each of the operations that
we add to the Multi must have a unique name—that’s what the :artist and :log
atoms are for. After that, we pass exactly what we would pass to the Repo.insert
function: an Artist struct for the first call, and our Log changeset for the second.

For this example, we don’t have any other options we need to include in our
insert calls, but if we did, we could add them here. The functions in Multi can
accept the same options as their counterparts in Repo, so anything you might
send to Repo.insert can be sent to Multi.insert as well.

At this point, we still haven’t touched the database. We just have a list of
operations stored in the Multi struct. When we finally pass the struct to
Repo.transaction, the database begins executing the operations queued in the
Multi. The return value, however, is different than what we get when we pass
in a function:

Repo.transaction(multi)
#=> {:ok,
#=> %{
#=> artist: %MusicDB.Artist{...}
#=> log: %MusicDB.Log{...}

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

#=> }}

The transaction succeeded, so we get a tuple with :ok and a map. The keys in
the map are the unique names we provided to each operation in the Multi (:artist
and :log in this case). The values are the return values for each of those
operations. This makes it easy for us to grab the return values of any or all
of the operations we ran. In this case, both of the operations were inserts, so
we get structs representing our newly inserted records.

Capturing Errors with Multi
Here’s where the two approaches really diverge. If an error occurs in a Multi,
we get detailed information on where the error occurred, and what happened
just before. Let’s take a look.

Examining the Return Value

To see this in action, let’s create a new Multi that performs an update on the
Artist record we just inserted, then tries to insert an invalid changeset:

priv/examples/transactions_06.exs
artist = Repo.get_by(Artist, name: "Johnny Hodges")
artist_changeset = Artist.changeset(artist,

%{name: "John Cornelius Hodges"})
invalid_changeset = Artist.changeset(%Artist{},

%{name: nil})
multi =

Multi.new
|> Multi.update(:artist, artist_changeset)
|> Multi.insert(:invalid, invalid_changeset)

Repo.transaction(multi)
#=> {:error, :invalid,
#=> #Ecto.Changeset<
#=> action: :insert,
#=> changes: %{},
#=> errors: [name: {"can't be blank", [validation: :required]}],
#=> data: #MusicDB.Artist<>,
#=> valid?: false
#=> >, %{}}

This time, the Multi failed, so we get a tuple with four items: the :error atom,
the name of the operation that failed (:invalid), the value that caused the failure
(in this case, the invalid changeset, with a populated errors field), and a map
containing the changes so far. The database will have already rolled back
these changes, but Ecto provides them for you to inspect if needed.

The benefit of this arrangement is that this single return value tells if we
succeeded, or, if we failed, exactly where we failed. This means that we can

• Click HERE to purchase this book now. discuss

Running Transactions with Ecto.Multi • 11

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_06.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

use pattern matching to respond to each of the success or failure scenarios
separately:

case Repo.transaction(multi) do
{:ok, _results} ->

IO.puts "Operations were successful."
{:error, :artist, changeset, _changes} ->

IO.puts "Artist update failed"
IO.inspect changeset.errors

{:error, :invalid, changeset, _changes} ->
IO.puts "Invalid operation failed"
IO.inspect changeset.errors

end

That’s a lot cleaner than what we had when we were using anonymous func-
tions with Repo.transaction. Here we used a single case statement as our responses
were fairly short. But you could also use pattern-matched functions if you
needed more complex responses.

Examining the List of Changes So Far

The last value of the returned tuple is supposed to be a list of changes that
occurred before the error happened. Let’s take another look at what we got
in the last example:

artist = Repo.get_by(Artist, name: "Johnny Hodges")
artist_changeset = Artist.changeset(artist,

%{name: "John Cornelius Hodges"})
invalid_changeset = Artist.changeset(%Artist{},

%{name: nil})
multi =

Multi.new
|> Multi.update(:artist, artist_changeset)
|> Multi.insert(:invalid, invalid_changeset)

Repo.transaction(multi)
#=> {:error, :invalid,
#=> #Ecto.Changeset<
#=> action: :insert,
#=> changes: %{},
#=> errors: [name: {"can't be blank", [validation: :required]}],
#=> data: #MusicDB.Artist<>,
#=> valid?: false
#=> >, %{}}

We got an empty map—that seems surprising. The return value told us that
the second operation in the Multi failed, so we would expect to see the result
of the first operation in the list of changes so far.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

This is because Ecto doesn’t like to waste the database’s time. If the Multi contains
operations that use changesets, Ecto first checks to make sure all the changesets
are valid. If any are not, Ecto won’t bother running the transaction at all. It
just flags the invalid changeset and sends it back to us in the return value.
There’s no need to trouble the database with an invalid changeset.

Let’s try a different example so we can see something besides an empty map.
We’ll create a new Multi that starts with a successful update. We’ll then force
an error by trying to insert a new %Genre{} record with a name that already
exists in the database (as you might recall from Working with Constraints,
on page ?, the genres table has a unique index on the name column).

artist = Repo.get_by(Artist, name: "Johnny Hodges")
artist_changeset = Artist.changeset(artist,

%{name: "John Cornelius Hodges"})
genre_changeset =

%Genre{}
|> Ecto.Changeset.cast(%{name: "jazz"}, [:name])
|> Ecto.Changeset.unique_constraint(:name)

multi =
Multi.new
|> Multi.update(:artist, artist_changeset)
|> Multi.insert(:bad_genre, genre_changeset)

Repo.transaction(multi)
#=> {:error, :bad_genre, #Ecto.Changeset< ... >,
#=> %{
#=> artist: %MusicDB.Artist{
#=> __meta__: #Ecto.Schema.Metadata<:loaded, "artists">,
#=> albums: #Ecto.Association.NotLoaded<association
#=> :albums is not loaded>,
#=> birth_date: nil,
#=> death_date: nil,
#=> id: 4,
#=> inserted_at: ~N[2018-03-23 14:02:28],
#=> name: "John Cornelius Hodges",
#=> tracks: #Ecto.Association.NotLoaded<association
#=> :tracks is not loaded>,
#=> updated_at: ~N[2018-03-23 14:02:28]
#=> }
#=> }}

Now we can get a good look at that last value. The keys in the map correspond
to our named Multi functions that have already been run. In this example, we
just had the one :artist update so that’s all this map contains. The value of the
item is the result of the operation. Here we can see that our “Johnny Hodges”
record was updated to “John Cornelius Hodges” as we expected. But because

• Click HERE to purchase this book now. discuss

Running Transactions with Ecto.Multi • 13

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

the Multi failed (thanks to the addition of our bad_genre operation), the database
rolled back the change. We can confirm that by looking at the database again:

Repo.get_by(Artist, name: "John Cornelius Hodges")
#=> nil

We get no records back when we search for “John Cornelius Hodges,” which
confirms that our update was indeed rolled back.

Optimizing Multi with Changesets

One important consideration with Multi is that the transaction call works with
unhandled errors the same way as it does with functions: they’re bubbled up
to the function that called the transaction. Consider this example:

multi =
Multi.new
|> Multi.insert(:artist, %Artist{})

Repo.transaction(multi)
#=> ** (Postgrex.Error) ERROR 23502 (not_null_violation): null value
#=> in column "name" violates not-null constraint

Instead of passing a changeset to insert we passed in an empty Artist struct.
Our database requires that all records in artists have a non-null name field,
so the insert operation fails. This results in transaction raising an error, rather
than returning the nicely arranged tuple we saw in the last example.

Given this behavior, it’s best to use changesets with Multi whenever possible.
Creating changesets with validations will help Ecto catch errors within the
bounds of your Elixir code before they hit the database. Of course, you always
need to consider that unhandled errors can happen, and you’ll need to design
your code to respond to those errors in a way that minimizes impact to your
users. But you can reduce the occurrences of those kinds of errors by fortifying
your changesets as much as possible.

Executing Non-Database Operations with Multi
Based on what we’ve seen of Multi so far, it might appear that executing trans-
action with functions has one clear advantage: functions allow you to run any
Elixir code within the transaction. Recall our earlier example of updating a
search engine within a transaction call. Fortunately, Multi offers this functionality
as well. The run function allows you to add any named or anonymous function
to be run as part of the Multi. Here’s how we might add the search engine
update logic we talked about earlier in this chapter:

priv/examples/transactions_07.exs
artist = %Artist{name: "Toshiko Akiyoshi"}

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wmecto/code/priv/examples/transactions_07.exs
http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

multi =
Multi.new()
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))
|> Multi.run(:search, fn _repo, changes ->

SearchEngine.update(changes[:artist])
end)

Repo.transaction(multi)

In this example, we used an anonymous function for the run operation. The
function accepts two arguments, our current Repo and a map of the changes
made in the Multi so far. We need the Artist record that we inserted, so we grab
the :artist item from the changes map. Ecto expects our function to return {:ok,
value} if the function succeeded or {:error, value} if it failed. In that case, value
can be any value of our choosing.

For more flexibility, we can use Multi.run/5, which lets us specify the module,
the function, and a list of additional arguments separately:

multi =
Multi.new()
|> Multi.insert(:artist, artist)
|> Multi.insert(:log, Log.changeset_for_insert(artist))
|> Multi.run(:search, SearchEngine, :update, ["extra argument"])

With this form of run, Ecto will still pass in the Repo and the list of changes to
the specified function—these will be the first arguments passed to the func-
tion, with the arguments you specify immediately following. The last line in
the preceding code will result in SearchEngine.update being called like this:
SearchEngine.update(repo, changes, "extra argument").

The run function gives you the flexibility to execute any Elixir code as part of
your transaction. This is useful for non-database operations, but it’s also useful
for database operations that Multi does not directly support. For example, there
is no Multi.all function to mirror the Repo.all function. If you need to run a query
within an operation, you could call Repo.all within a function called by run.

• Click HERE to purchase this book now. discuss

Running Transactions with Ecto.Multi • 15

http://pragprog.com/titles/wmecto
http://forums.pragprog.com/forums/wmecto

