
Extracted from:

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

This PDF file contains pages extracted from Craft GraphQL APIs in Elixir with Ab-
sinthe, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

Bruce Williams
Ben Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-255-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Making a Query
A GraphQL query is the way that API users can ask for specific pieces of
information. We’ve defined the shape of our GraphQL MenuItem type, but to
support users getting menu items, we need to provide two things:

• A way for users to request objects of the type
• A way for the system to retrieve (or resolve) the associated data

The key to the first objective is defining a special object type to serve as the
entry point for queries on a GraphQL schema. We already defined it when we
used the query macro earlier.

The query macro is just like object, but it handles some extra defaults for us
that Absinthe expects. Since we’ve already defined a blank query object, let’s
take a look at what it looks like in IEx, too:

iex(1)> Absinthe.Schema.lookup_type(PlateSlateWeb.Schema, "RootQueryType")

The result looks something like this:

%Absinthe.Type.Object{
identifier: :query,
name: "RootQueryType",
description: nil,
fields: %{},
interfaces: [],
is_type_of: nil

}

As you can see, there’s nothing special about the root query object type
structurally. Absinthe will use it as the starting point of queries, determining
what top-level fields are available.

Let’s add the field we need, :menu_items, for our menu item listing query. We’ll
use the same field macro we used when we were building our :menu_item object:

query do

field :menu_items, list_of(:menu_item)

end

list_of is a handy Absinthe macro that we can use to indicate that a field returns
a list of a specific type. Technically, here it’s shorthand for %Absinthe.Type.List{of_
type: :menu_item}. That’s a little long to type every time you need to return a list.
We’ll use menu_items, since it should return information about more than one
menu item.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Supporting Language Conventions

GraphQL is often used by front-end languages like JavaScript that have slightly dif-
ferent conventions than Elixir. In Elixir, it’s more conventional to use :menu_items, but
in JavaScript, we’d expect menuItems (which is the GraphQL convention, as well).

Lucky for us, Absinthe handles translating between these two conventions automat-
ically so that both the client and the server can work using the formats most familiar
to them. The functionality is extensible, too; if you want to use a different naming
convention in your GraphQL documents, you can.

Our :menu_items field doesn’t actually build the list of menu items yet. To do
that, we have to retrieve the data for the field. GraphQL refers to this as res-
olution, and it’s done by defining a resolver for our field.

A field’s resolver is the function that runs to retrieve the data needed for a
particular field. Let’s build our first one for the :menu_items field. Our menu
item data is modeled using Ecto:3

02-chp.schema/2-object/lib/plate_slate/menu/item.ex
defmodule PlateSlate.Menu.Item do

use Ecto.Schema
import Ecto.Changeset
alias PlateSlate.Menu.Item

schema "items" do
field :added_on, :date
field :description, :string
field :name, :string
field :price, :decimal

belongs_to :category, PlateSlate.Menu.Category

many_to_many :tags, PlateSlate.Menu.ItemTag,
join_through: "items_taggings"

timestamps()
end

@doc false
def changeset(%Item{} = item, attrs) do

item
|> cast(attrs, [:name, :description, :price, :added_on])
|> validate_required([:name, :price])
|> foreign_key_constraint(:category)

end
end

3. https://hex.pm/packages/ecto

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate/menu/item.ex
https://hex.pm/packages/ecto
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

To retrieve all the menu items, do the following:

PlateSlate.Repo.all(PlateSlate.Menu.Item)

Since this is exactly what our :menu_items field needs to do, let’s wire that in
as the result of its resolver, using Elixir’s alias to shorten the module names
for readability:

02-chp.schema/2-object/lib/plate_slate_web/schema.ex
alias PlateSlate.{Menu, Repo}

query do

field :menu_items, list_of(:menu_item) do
resolve fn _, _, _ ->
{:ok, Repo.all(Menu.Item)}

end
end

end

We’ve passed a function to the resolve macro to set the field’s resolver. Because
the field doesn’t need any parameters, we can ignore the function arguments
and just return an :ok tuple with the list of menu items. That lets Absinthe
know that we were able to resolve the field successfully.

You don’t need to define a resolver function for every field. For example, this
query will attempt to resolve a menu item’s :name field:

{
menuItems {

name➤

}
}

If a resolver is not defined for a field, Absinthe will attempt to use the equiva-
lent of Map.get/2 to retrieve a value from the parent value in scope, using the
identifier for the field. You’ll learn more about how that works in Setting
Defaults, on page ?.

Resolution starts at the root of a document and works its way deeper, with
each field resolver’s return value acting as the parent value for its child fields.
Because the resolver for menuItems (that is, the resolver we defined in our
schema for the :menu_items field) returns a list of menu item values—and reso-
lution is done for each item in a list—the parent value for the name field is a
menu item value. Our query, in fact, boils down to something very close
to this:

for menu_item <- PlateSlate.Repo.all(PlateSlate.Menu.Item) do
Map.get(menu_item, :name)

• Click HERE to purchase this book now. discuss

Making a Query • 7

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

end

Of course, our GraphQL request gets this information bundled up, nicely
labeled in a JSON response from Absinthe.

Let’s take a break from editing the schema to play with GraphiQL, a handy
user interface we can use to query our fledgling GraphQL API.

Running Our Query with GraphiQL
GraphiQL is “an in-browser IDE for exploring GraphQL,” and to make things
easy for the user, Absinthe integrates with three versions of GraphiQL: the
official interface,4 an advanced version,5 and GraphQL Playground.6 All three
are built in to the absinthe_plug7 package and ready to go with just a little
configuration.

The absinthe_plug dependency is already in our mix.exs file from the initial setup,
but we need to now configure the Phoenix router to use it. Replace the existing
"/" scope with the following block:

02-chp.schema/2-object/lib/plate_slate_web/router.ex
scope "/" do

pipe_through :api

forward "/api", Absinthe.Plug,
schema: PlateSlateWeb.Schema

4. https://github.com/graphql/graphiql
5. https://github.com/OlegIlyenko/graphiql-workspace
6. https://github.com/graphcool/graphql-playground
7. https://github.com/absinthe-graphql/absinthe_plug

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/lib/plate_slate_web/router.ex
https://github.com/graphql/graphiql
https://github.com/OlegIlyenko/graphiql-workspace
https://github.com/graphcool/graphql-playground
https://github.com/absinthe-graphql/absinthe_plug
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

forward "/graphiql", Absinthe.Plug.GraphiQL,
schema: PlateSlateWeb.Schema,
interface: :simple

end

Really, we’re setting up two routes: "/api" with the regular Absinthe.Plug, and
"/graphiql" with the GraphiQL plug. The former is what API clients would use and
what we’ll use in our tests, and then the latter provides the “in-browser” IDE
we’ll use now. Specifically, we’re going to use the simplified, official GraphiQL
interface, set with the interface: :simple option.

Let’s start our application by running the following:

$ mix phx.server

Since the server will start on port 4000, visit http://localhost:4000/graphiql (adding
the path where you have mounted GraphiQL) and see the GraphiQL user
interface.

There’s a lot to see here, but let’s give our query a shot before we dig into it
much further. Start by typing your query into the text area to the top left.

Did you notice that while you were typing, GraphiQL helpfully suggested some
autocompletions? That’s because when you loaded the page, it automatically
sent an introspection query to your GraphQL API, retrieving the metadata
it needs about PlateSlateWeb.Schema to support autocompletion and display
documentation.

When you press the play button above the query, you can see the JSON result
in the right-hand text area as shown in the top figure on page 10.

Success! Now, let’s try this one, adding the :id field:

{
menuItems {

id➤

name
}

}

• Click HERE to purchase this book now. discuss

Running Our Query with GraphiQL • 9

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Here’s the result:

It’s handy being able to specify additional fields in our query without having
to modify the schema any further! We already defined the :id field on our
:menu_item type, so it works out of the box. We just weren’t asking for it before.

What else can we query? Let’s look at the API documentation that GraphiQL
has collected for us. To the right of the GraphiQL interface, there’s a “Docs”
link that, when clicked, will open up a new sidebar full of API documentation:

If you click on RootQueryType, you can see the menuItems field with its type,
[MenuItem], displayed, but it’s missing a more detailed description. You can
add one by editing your schema.

Let’s do that now. Back in web/schema.ex, you can add a :description value as part
of the third argument to the field macro:

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

field :menu_items, list_of(:menu_item),
description: "The list of available items on the menu" do

«Menu item field definition»
end

If you look back at GraphiQL (refresh the page), your description will now be
displayed.

There’s another technique you can use to add descriptions, using a module
attribute, @desc, just as you would with Elixir’s @doc:

@desc "The list of available items on the menu"
field :menu_items, list_of(:menu_item) do
«Menu item field definition»

end

Because the latter approach supports multiline documentation more cleanly
and sets itself off from the working details of our field definitions, it’s the
approach we’ll use in our application.

Testing Our Query
GraphiQL is a great tool to explore our API and when we’d like to manually run
a query, but it’s not a replacement for a test suite. We’ll use ExUnit to add tests
for our Absinthe schema to make sure our queries work now and later on to
prevent regressions. Our future selves will appreciate the forethought.

ExUnit is bundled with Elixir, so no dependencies are required. Since our
PlateSlate application is using Phoenix, ExUnit has already been set up with
a preconfigured test harness that we can use.

Because we know our users are going to use the API by hitting /api, we can
treat our API just as we would a Phoenix controller, using the PlateSlate.ConnCase
helper module that Phoenix generously generated for us:

• Click HERE to purchase this book now. discuss

Testing Our Query • 11

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

02-chp.schema/2-object/test/plate_slate_web/schema/query/menu_items_test.exs
defmodule PlateSlateWeb.Schema.Query.MenuItemsTest doLine 1

use PlateSlateWeb.ConnCase, async: true-

-

setup do-

PlateSlate.Seeds.run()5

end-

-

@query """-

{-

menuItems {10

name-

}-

}-

"""-

test "menuItems field returns menu items" do15

conn = build_conn()-

conn = get conn, "/api", query: @query-

assert json_response(conn, 200) == %{-

"data" => %{-

"menuItems" => [20

%{"name" => "Reuben"},-

%{"name" => "Croque Monsieur"},-

%{"name" => "Muffuletta"},-

«Rest of items»-

]25

}-

}-

end-

-

end30

The setup block loads our seed data as a convenience. The test itself starts by
building a connection. Then it passes the @query module attribute we defined
previously (making use of Elixir’s handy multiline """ string literal) as the :query
option, which is what Absinthe.Plug expects. The response is then checked to
make sure that it has an HTTP 200 status code and includes the JSON data
that we expect to see.

Running the test gives us exactly what we were hoping for:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
.

Finished in 0.2 seconds
1 test, 0 failures

After a little compilation, a passing test!

We’ll continue to build tests out this way as our API grows. These tests exercise
a lot of our system, from HTTP requests through JSON serialization, helping

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/02-chp.schema/2-object/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

to reduce our stress by keeping us confident that changes elsewhere in the
application aren’t affecting our GraphQL users.

Moving On
In this chapter, we learned how to build the foundation of a GraphQL schema
in an Elixir application, defining an object type that we exposed via a query
field, and we tested our fledgling API using a popular tool, GraphiQL.

Here are a couple challenges for you before we move on:

1. We’ve defined :id and :name fields for our MenuItem object type. The backing
Ecto schema, PlateSlate.Menu.Item, has a number of other fields we could
also expose in our GraphQL schema. Define another one using one of the
built-in scalar types we mentioned earlier.

2. Add descriptions for the fields inside the MenuItem object type, using the
@desc form. Don’t stop there: you can use it to add a description for the
object type itself, too. Verify that GraphiQL is displaying the descriptions.

Once you’re done, we’re going to look at supporting user input in the next
chapter, which will open up a whole range of new and interesting API
possibilities.

• Click HERE to purchase this book now. discuss

Moving On • 13

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

