Extracted from:

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

This PDF file contains pages extracted from Craft GraphQL APIs in Elixir with Ab-
sinthe, published by the Pragmatic Bookshelf. For more information or to purchase
a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

The .
Pragmatic
Programmers

Cratt GraphQL APIs
in Elixir with
Absinthe

Flexible, Robust
Services for Queries,
Mutations, and
Subscriptions

e

324n0S J1X1)3 INOA

Bruce Williams
Ben Wilson
Series editor: Bruce A. Tate

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

Bruce Williams
Ben Wilson

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate

Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-255-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Submitting Subscriptions

Now that we can create orders, we're at the perfect spot to introduce the first
basic subscription that will support pushing these orders as they’re created
out to subscribed clients. You'll first need to define a subscription field in
your schema, and then you'll also need a way to actually trigger this subscrip-
tion when the :place_order mutation runs.

06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
subscription do
field :new order, :order do

config fn _args, info ->
{:0k, topic: "*"}
end
end
end

For the most part, this is a pretty ordinary-looking field. We've got another
top-level object, subscription, to house our subscription fields, and then the
:new_order, which will return the :order object we're already familiar with. The
fact that it returns a regular :order object is crucial, because this means that
all the work we have done to support the output of the mutation can be reused
immediately for real-time data.

What's new, however, is the config macro, and it’s one of a couple macros that
are specific to setting up subscriptions. The job of the config macro is to help us
determine which clients who have asked for a given subscription field should
receive data by configuring a topic. We'll talk more later about constructing
topics, but the main thing to know is that topics are scoped to the field they're
on, and they have to be a string. We're just going to use "' to indicate that we
care about all orders (but there’s nothing special about "*" itself).

Set Up and Return Error

The config function can also return {:error, reason}, which prevents
the subscription from being created.

Let’s see if we can subscribe with GraphiQL. First, let's make sure it’s running

again, but this time, inside an IEx session (you'll see why shortly):

$ iex -S mix phx.server
[info] Running PlateSlateWeb.Endpoint with Cowboy using http://0.0.0.0:4000

Then, browse to http://localhost:4000/graphigl and enter the following in the left-
side panel (you can close the “Query Variables” panel if you have it open):

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

°6

subscription {
newOrder {
customerNumber
items { name quantity}
}
}

When you hit “play,” instead of getting a result, you’'ll get a message saying,
"Your subscription data will appear here after server publication!":

GraphiQL > Prettify £ Dacs

subscription { "Your subscription data will appear here after server
newOrder { publication!™”
customerNumber
items { name guantity}
}
}

QUERY VARIABLES

What's happening here is that although the server has accepted the subscrip-
tion document, the server is waiting on some kind of event that will trigger
execution of the document and distribution of the result. Specifically, it's
waiting for an event that targets the field of our subscription newOrder and the
topic associated with this specific document "*".

The most direct way to make this trigger happen is with the Absinthe.Subscrip-
tion.publish/3 function, which gives us manual control of the publishing mecha-
nism. If you go into the IEx session in your console, you can trigger the sub-
scription you just created in GraphiQL by running:

iex> order = PlateSlate.Ordering.Order |> PlateSlate.Repo.all |> List.last
«%PlateSlate.Ordering.Order{} displayed»
iex> Absinthe.Subscription.publish(

PlateSlateWeb.Endpoint,

order,

new order: "*"

)

1ok

If you look back to your GraphiQL page, you should see a result as shown in
the figure on page 7.

The arguments to the publish/3 function are the module you're using as the
pubsub, the value that you're broadcasting, and the field: topic pairs at which

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

YYVY

Submitting Subscriptions ¢ 7

GraphiQL > Prettify £ Docs

subscription { {
neworder { “data®: {
customerNumber “newdrder”: {
items { name quantity} “items": [

} "quantity": 1,
“name”: "Banh mi"

L
{
"quantity": 2,
“name": "Chocolate Milkshake"
}
1
"customerNumber”: 4
}
}
}

QUERY VARIABLES

to broadcast the value. Concretely then, the function call you typed in IEx
says to broadcast the last %Order{} struct to all clients subscribed to the
:new_order field via the "*" topic.

You may have noticed when you set up the subscription field that you didn’t
specify a resolver, and this is why. Unlike a root query or root mutation resolver,
which generally starts with no root value and has to start from scratch, the root
value of a subscription document is the value that is passed to publish/3. You can
see this for yourself if you add just an inspect resolver to the subscription field:

06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
subscription do
field :new_order, :order do
config fn _args, _info ->
{:0k, topic: "*"}
end

resolve fn root, , ->
I0.inspect(root)
{:0k, root}
end
end
end

If you re-run the Absinthe.Subscription.publish/3 call in your IEx session, you will
see printed into console the value you are broadcasting, nested under the
:new_order key:

%0rdering.Order{

«Contents»
}

With this Absinthe.Subscription.publish/3 function at our disposal, it’s clear then
that one possibility for making our live interface is to put it inside the :place_order
mutation resolver so that instead of triggering subscriptions from IEx, we’ll
trigger subscriptions every time a new order is placed.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

\ A A

°8

06-chp.subscriptions/4-publish/lib/plate_slate_web/resolvers/ordering.ex
def place order(, %{input: place order input},) do
case Ordering.create order(place order input) do
{:0k, order} ->
Absinthe.Subscription.publish(PlateSlateWeb.Endpoint, order,
new order: "*"
)
{:0k, %{order: order}}
{:error, changeset} ->
{:0k, %{errors: transform errors(changeset)}}
end
end

You could have some fun with this:

¢ In one window, open GraphiQL and enter the subscription document.

¢ In another window, also go to GraphiQL and enter the mutation document.
e Press “play” in the mutation window.

e Watch real-time events show up in the subscription window!

Play around with changing what parts of the subscription document you ask
for, and play around with the values you put in the mutation document to
get a feel for how the two documents relate to one another.

Testing Subscriptions

Testing your API is important, and subscriptions are no exception. We've been
using helpers from the PlateSlate.ConnCase module in our test to ease building
HTTP-based integration tests; you’ll need a similar PlateSlate.SubscriptionCase
module for managing the subscription integration tests via channels. While
the ConnCase module gets generated by Phoenix when we first create the project,
the SubscriptionCase module we’ll need to make ourselves.

06-chp.subscriptions/4-publish/test/support/subscription_case.ex
defmodule PlateSlateWeb.SubscriptionCase do
@moduledoc """
This module defines the test case to be used by
subscription tests

use ExUnit.CaseTemplate

using do
quote do
Import conveniences for testing with channels
use PlateSlateWeb.ChannelCase
use Absinthe.Phoenix.SubscriptionTest,
schema: PlateSlateWeb.Schema

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/lib/plate_slate_web/resolvers/ordering.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/test/support/subscription_case.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Testing Subscriptions ¢ 9

setup do
PlateSlate.Seeds.run()

{:0k, socket} =
Phoenix.ChannelTest.connect(PlateSlateWeb.UserSocket, %{})
{:0k, socket} =
Absinthe.Phoenix.SubscriptionTest.join absinthe(socket)

{:0k, socket: socket}
end

import unquote(_ MODULE_), only: [menu_item: 1]
end
end

handy function for grabbing a fixture
def menu_item(name) do
PlateSlate.Repo.get by!(PlateSlate.Menu.Item, name: name)
end
end

This module sets up the socket we’ll use in each of our test cases, and it also
gives us a convenient function for getting menu items.

As far as the test case itself goes, much of the setup here is exactly the same
as any other Phoenix channel test. Absinthe.Phoenix provides some helpers to
instantiate a socket process with the configuration you added to the UserSocket.

06-chp.subscriptions/4-publish/test/plate_slate_web/schema/subscription/new_order_test.exs
defmodule PlateSlateWeb.Schema.Subscription.NewOrderTest do
use PlateSlateWeb.SubscriptionCase

@subscription
subscription {
newOrder {

customerNumber
}
}

@mutation
mutation ($input: PlaceOrderInput!) {

placeOrder(input: $input) { order { id } }
}

test "new orders can be subscribed to", %{socket: socket} do
setup a subscription
ref = push doc socket, @subscription
assert_reply ref, :0k, %{subscriptionId: subscription id}

run a mutation to trigger the subscription
order_input = %{"customerNumber" => 24,
"items" => [%{"quantity" => 2, "menuItemId" => menu item("Reuben").id}]

}

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/4-publish/test/plate_slate_web/schema/subscription/new_order_test.exs
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

ref = push _doc socket, @mutation, variables: %{"input" => order input}
assert reply ref, :o0k, reply
assert %{data: %{"placeOrder" => %{"order" => %{"id" => }}}} = reply

check to see if we got subscription data

expected = %{
result: %{data: %{"newOrder" => %{"customerNumber" => 24}}},
subscriptionId: subscription_id

}
assert push "subscription:data", push
assert expected == push

end

end

If channels are pretty new to you, that’s okay. The essential thing to keep in
mind is that it’s a lot like testing a GenServer. You've got the test process
itself, which acts like the client, and you've got the socket process, which
operates just as it does when connected to by an external client. You can
push an event and params to the socket and then listen for a specific reply
to that event, much like a GenServer call. Each push is asynchronous, so it's
important to make sure to wait for a reply after each push. The socket can
also send messages directly to the test process, which is what will happen
when we trigger an event.

Testing a socket, then, is just a matter of sending it the data we need to
configure our subscription, triggering a mutation, and then waiting for sub-
scription data to get pushed to the test process.

So the first thing we do is push a "doc" event to the socket along with the
parameters specifying our subscription document, and then we assert for
a reply from the socket that returns a subscriptionld. This subscriptionld is impor-
tant because a single socket can support many different subscriptions, and
the subscriptionld is used to keep track of what data push belongs to what
subscription.

The next thing we do is run a mutation to place an order. This operation is
actually pushed over the socket as well; sockets support all the different
operation types. While an explicit Absinthe.run would also work, it would
require that we explicitly pass in the pubsub configuration, whereas that
config is picked up automatically if the document is pushed through the
socket.

Finally, all we have to do is assert that the test process gets a message con-
taining the expected subscription data!

Let’'s go ahead and run our test to make sure everything is working as
expected:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Subscription Triggers ® 11

$ mix test test/plate_slate_web/schema/subscription/new_order_test.exs
«Debugging output>

Finished in 0.1 seconds
1 test, 0 failures

There we go! Not only did we get subscriptions working in GraphiQL, we were
able to treat it like any other part of our API and write a proper integration
test. Now that we have subscriptions working using a manual method, let’s
look at a mechanism that we can use to publish changes automatically as
they occur.

Subscription Triggers

In the previous section, we only used a single hard-coded topic value, but
when we start thinking about tracking the life cycle of a particular entity, we
need to pay a lot more attention to how we’re setting up our subscriptions
and how we're triggering them. The challenge isn’t just keeping track of how
the topics are constructed; it can also be hard to make sense of where in your
code base publish/3 calls may be happening. We're going to explore an alternative
approach to trigger mutations as we expand on the order-tracking capabilities
of the PlateSlate system.

Everything that has a beginning has an end, and for the hungry customer,
orders are fortunately no exception. We need to complete the life cycle of an
order by providing two mutations: one to indicate that it’s ready, and one to
indicate that it was picked up.

Fortunately, most of what we need to do this in our context and schema
already exists, so we can just jump directly to building out the relevant
mutation fields in the GraphQL schema and filling out each resolver.

06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
mutation do

field :ready order, :order result do

arg :id, non_null(:id)

resolve &Resolvers.Ordering.ready order/3
end
field :complete order, :order result do

arg :id, non_null(:id)

resolve &Resolvers.Ordering.complete order/3
end

«<0ther fields»
end

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

°12

Our :ready order and :complete order fields use new resolver functions from
PlateSlateWeb.Resolvers.Ordering; let’s add those:

06-chp.subscriptions/5-trigger/lib/plate_slate_web/resolvers/ordering.ex
def ready order(, %{id: id},) do
order = Ordering.get order!(id)
with {:0k, order} <- Ordering.update order(order, %{state: "ready"}) do
{:0k, %{order: order}}
else
{:error, changeset} ->
{:0k, %{errors: transform errors(changeset)}}
end
end

def complete order(, %{id: id},) do
order = Ordering.get order!(id)

with {:0k, order} <- Ordering.update order(order, %{state: "complete"}) do
{:0k, %{order: order}}
else
{:error, changeset} ->
{:0k, %{errors: transform errors(changeset)}}
end
end

So far, so good. This may start to feel pretty second nature at this point. If
you are concerned that the changeset error handling here is seeming kind
of redundant, hold on tight—that is covered in the very next chapter on
middleware.

Subscribing to these events is just a little bit different than before, because
now we're trying to handle events for specific orders based on ID. When the
client is notified about new orders via a new_order subscription, we then want
to give them the ability to subscribe to future updates for each of those sub-
scriptions specifically.

We want to support a Graph@QL document that looks like:

subscription {
updateOrder(id: "13") {
customerNumber
state
}
}

Notably, we want to use this one subscription field to get updates triggered
by both the :ready_order and :complete_order mutation fields. While it’s important
to represent the mutations as different fields, it’s often the case that you just
need a single subscription that lets you get all the state changes for a partic-
ular entity that you want to watch.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/resolvers/ordering.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Subscription Triggers ® 13

06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
subscription do
field :update order, :order do
arg :id, non_null(:id)

config fn args, info ->
{:0k, topic: args.id}
end
end

«<0ther fields»
end

The main difference is that we're now doing something more dynamic in our
config function. Here we're using the arguments provided to the field to generate
a topic that is specific to the ID of the order we care about.

Based on your previous experience with the Absinthe.Subscription.publish/3 function,
you might be able to figure out the function call you could put in each
mutation resolver to trigger this subscription field:

Absinthe.Subscription.publish(
PlateSlateWeb.Endpoint, order,
update order: order.id

)

However, while we could use the publish/3 function here, we're going to explore
a slightly different option. The issue with our approach thus far is that
although our schema contains the :place_order mutation and also the :new_order
subscription fields, there isn’t any indicator in the schema that these two
fields are connected in any way. Moreover, for subscription fields that are
triggered by several different mutations, the topic logic is similarly distributed
in a way that can make it difficult to keep track of.

This pattern of connecting mutation and subscription fields to one another
is so common that Absinthe considers it a first-class concept and supports
setting it as a trigger on subscription fields, avoiding the need to scatter publish/3
calls throughout your code base. Let’s look at how we can use the trigger macro
to connect the new subscription field to each mutation without touching our
resolvers:

06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
subscription do
field :update order, :order do
arg :id, non_null(:id)

config fn args, info ->
{:0k, topic: args.id}
end

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
http://media.pragprog.com/titles/wwgraphql/code/06-chp.subscriptions/5-trigger/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

trigger [:ready order, :complete order], topic: fn

%{order: order} -> [order.id]
_ > 11

end

resolve fn %{order: order}, , _

{:0k, order}
end
end

«0ther fields»
end

14

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

