
Extracted from:

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

This PDF file contains pages extracted from Craft GraphQL APIs in Elixir with Ab-
sinthe, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Craft GraphQL APIs in Elixir
with Absinthe

Flexible, Robust Services for Queries, Mutations,
and Subscriptions

Bruce Williams
Ben Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Series Editor: Bruce A. Tate
Copy Editor: Nicole Abramowitz
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-255-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—April 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Web APIs need to define and validate input from users, whether it’s used to
query information or to modify it. In most web frameworks, this input defini-
tion is ad hoc and often mixed in with the business logic of the application.
GraphQL takes a more declarative approach, however, by defining input as
part of your API schema and supporting type validations as a core feature.

In this chapter, you’ll see that by articulating the rules about our data in the
schema, we can have the Absinthe package enforce them for us, allowing our
Elixir application code to focus on more core application concerns. This will
make our code more readable and easier to maintain.

We’ll dig into the nuts and bolts of user input in GraphQL, covering the dif-
ferent ways users can provide it and the constraints we can set. You’ll learn
about new input types and how to apply them to make your GraphQL schemas
more descriptive, accurate representations of your API.

Let’s start by looking at GraphQL’s most fundamental user input concept,
the field argument.

Defining Field Arguments
GraphQL documents are made up of fields. The user lists the fields they would
like, and the schema uses its definition of those fields to resolve the pieces
of data that match. The system would be pretty inflexible if it did not also
allow users to provide additional parameters that would clarify exactly what
information each field needed to find. A user requesting information about
menuItems, for instance, may want to see certain menu items or a certain
number of them.

It’s for this reason that GraphQL has the concept of field arguments: a way
for users to provide input to fields that can be used to parameterize their
queries. Let’s take a look at our example application and see how we can
extend our Absinthe schema by defining the arguments that our API will
accept for a field, and then see how we can use those arguments to tailor the
result for users.

We’ve already built a field in our API that we could make more flexible by
accepting user input: the list of menu items. Our schema’s menuItems field, if
you remember, looks something like this:

03-chp.userinput/1-start/lib/plate_slate_web/schema.ex
alias PlateSlate.{Menu, Repo}Line 1

-

query do-

-

field :menu_items, list_of(:menu_item) do5

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/1-start/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

resolve fn _, _, _ ->-

{:ok, Repo.all(Menu.Item)}-

end-

end-

10

end-

On line 7, the field’s resolver just returns all the menu items, without any
support for filtering, ordering, or other modifications to the scope or layout
of the result. The field isn’t declaring any arguments, so the resolver doesn’t
receive anything with which we could modify the list of menu items retrieved.

Let’s add an argument to our schema to support filtering menu items by
name. We’ll call it matching, then configure our field resolver to use it when
provided:

03-chp.userinput/2-matchinginline/lib/plate_slate_web/schema.ex
alias PlateSlate.{Menu, Repo}Line 1

import Ecto.Query-

-

query do-

5

field :menu_items, list_of(:menu_item) do-

arg :matching, :string-

resolve fn-

_, %{matching: name}, _ when is_binary(name) ->-

query = from t in Menu.Item, where: ilike(t.name, ^"%#{name}%")10

{:ok, Repo.all(query)}-

_, _, _ ->-

{:ok, Repo.all(Menu.Item)}-

end-

end15

-

end-

On line 7, we defined matching as a :string type. If you remember from the previ-
ous chapter, :string is a built-in type. We can use it as an input type, too.

We’re not making the matching argument mandatory here, so we need to support
resolving our menuItems field in the event it’s provided, and in the event it isn’t.
You can see Elixir’s pattern matching capability used in the two separate
function heads of our resolver to handle those two cases.

The second function head, on line 12, serves as the fall-through match and
is identical to our original resolver.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/2-matchinginline/lib/plate_slate_web/schema.ex
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

It’s the first function head, on line 9, that adds our new behavior. On line 10,
we make use of the matched argument as name (in the from macro that Ecto.Query1

provides) to build our Ecto query. We pulled the Ecto.Query macros in on line
2. By declaring our inputs up front, Absinthe has a bounded set of inputs to
work with and can thus give us an atom-keyed map to work with as argu-
ments, unlike Phoenix controller action params.

Resolvers and Field Arguments

Absinthe only passes arguments to resolvers if they have been
provided by the user. Making a map key match of the arguments
resolver function parameter is a handy way to check for a field
argument that’s been specified in the request.

Writing complicated resolvers as anonymous functions can have a negative
side effect on a schema’s readability, so to keep the declarative look and feel
of the schema alive and well, let’s do a little refactoring and extract the resolver
into a new module. Because filtering menu items is an important feature of
our application—and could be used generally, not just from the GraphQL
API—we’ll also pull the core filtering logic into the PlateSlate.Menu module, which
is where our business logic relating to the menu belongs.

Here’s our new resolver module:

03-chp.userinput/3-matching/lib/plate_slate_web/resolvers/menu.ex
defmodule PlateSlateWeb.Resolvers.Menu do

alias PlateSlate.Menu

def menu_items(_, args, _) do
{:ok, Menu.list_items(args)}

end
end

You can see that the resolver is calling PlateSlate.Menu.list_items/1, passing the
arguments. The logic inside PlateSlate.Menu looks like this:

03-chp.userinput/3-matching/lib/plate_slate/menu/menu.ex
def list_items(%{matching: name}) when is_binary(name) do

Item
|> where([m], ilike(m.name, ^"%#{name}%"))
|> Repo.all

end
def list_items(_) do

Repo.all(Item)
end

1. https://hexdocs.pm/ecto/Ecto.Query.API.html

• Click HERE to purchase this book now. discuss

Defining Field Arguments • 7

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/lib/plate_slate_web/resolvers/menu.ex
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/lib/plate_slate/menu/menu.ex
https://hexdocs.pm/ecto/Ecto.Query.API.html
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

This code should look pretty familiar; it’s been extracted out of our anonymous
resolver function and restructured into a named function. Doing this makes
both the resolver and the overall schema more readable.

The Point of "Pointless" Modules

While it might seem like adding resolver modules just to have them call functions
from other modules is superfluous, it’s important to set up a solid separation of
concerns early on in our project.

In general, a resolver’s job is to mediate between the input that a user sends to our
GraphQL API and the business logic that needs to be called to service their request. As
your schema gets more complex, you’ll be glad you made space in the overall architecture
of your application to keep your resolver and domain business logic separate.

We’ll cover structural decisions like these in more detail in Chapter 4, Adding Flexi-
bility, on page ?.

Now let’s wire our resolver back into our :menu_items field in the schema:

03-chp.userinput/3-matching/lib/plate_slate_web/schema.ex
alias PlateSlateWeb.Resolvers

query do

field :menu_items, list_of(:menu_item) do
arg :matching, :string
resolve &Resolvers.Menu.menu_items/3

end

end

Using Elixir’s & function capture special form2 here lets us tie in the function
from our new module as the resolver for the field and keeps the schema dec-
laration tight and focused.

Let’s explore using this new field argument that we’ve defined with some
GraphQL queries that cover a range of scenarios.

Providing Field Argument Values
There are two ways that a GraphQL user can provide argument values for an
argument: as document literals, and as variables.

2. https://hexdocs.pm/elixir/Kernel.SpecialForms.html#&/1

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/lib/plate_slate_web/schema.ex
https://hexdocs.pm/elixir/Kernel.SpecialForms.html#&/1
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Using Literals
Using document literals, values are embedded directly inside the GraphQL
document. It’s a straightforward approach that works well for static docu-
ments. Here’s a query that uses a document literal for the matching argument
that we’ve added to retrieve menu items whose names match "reu":

{
menuItems(matching: "reu") {➤

name
}

}

Argument values are given after the argument name and a colon (:), and the
literal for a :string argument is enclosed in double quotes ("). Let’s use this
query in a new test, just as we did in Testing Our Query, on page ?:

03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
{

menuItems(matching: "reu") {
name

}
}
"""
test "menuItems field returns menu items filtered by name" do

response = get(build_conn(), "/api", query: @query)
assert json_response(response, 200) == %{

"data" => %{
"menuItems" => [

%{"name" => "Reuben"},
]

}
}

end

Running the test, we can verify that our literal argument value is being passed
through, and the query successfully filtering the menu items returned:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
..

Finished in 0.4 seconds
2 tests, 0 failures

It works! Now let’s see what happens when a user provides a bad value:

03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
@query """
{

menuItems(matching: 123) {

• Click HERE to purchase this book now. discuss

Providing Field Argument Values • 9

http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
http://media.pragprog.com/titles/wwgraphql/code/03-chp.userinput/3-matching/test/plate_slate_web/schema/query/menu_items_test.exs
http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

name
}

}
"""
test "menuItems field returns errors when using a bad value" do

response = get(build_conn(), "/api", query: @query)
assert %{"errors" => [➤

%{"message" => message}➤

]} = json_response(response, 400)➤

assert message == "Argument \"matching\" has invalid value 123."➤

end

The first thing to notice here is that we’re getting an HTTP 400 response code
from Absinthe. This indicates that one or more errors occurred that prevented
query execution. Helpfully, the error given in the response tells the user of
the API what they’re doing wrong.

This is great! Our API can respond appropriately to user-provided values,
without any intervention by any custom type-checking code. By consulting
our schema, Absinthe handles it for us.

Let’s run it to make sure the error is returned:

$ mix test test/plate_slate_web/schema/query/menu_items_test.exs
...

Finished in 0.4 seconds
3 tests, 0 failures

Now that we have both valid and invalid tests working correctly, let’s talk
about how users might use this query in the real world. In the examples we’re
using for our tests, we’re using literal argument values directly in the GraphQL
document. This isn’t very reusable.

Imagine a user interface that took a search term from end users and then
called out to our API. If the front-end application only used document literals,
it would need to interpolate the search terms directly into the GraphQL doc-
ument. For each user request, a completely new document would have to be
generated, likely using string interpolation. To do this while ensuring that
the GraphQL document wouldn’t be malformed, it would need to sanitize the
input—making sure, for instance, that no double quotes were provided that
would prematurely end the string value and cause a parse error from the
GraphQL server.

This is a great use case for GraphQL variables—a way to insert dynamic
argument values provided alongside (rather than inside) the static GraphQL
document.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Using Variables
GraphQL variables act as typed placeholders for values that will be sent along
with the request, a concept that may be familiar to you if you’ve used
parameterized SQL queries for insertion and sanitization of values. GraphQL
variables are declared with their types—before they’re used—alongside the
operation type. We haven’t had to think about operation types before, so let’s
talk a little bit about what operations are and how they fit inside the GraphQL
document.

Understanding Operations

A GraphQL document consists of one or more operations, which model
something that we want the GraphQL server to do. Up to this point, we’ve
been asking the server to provide information—an operation that GraphQL
calls a query. GraphQL has other operation types too, notably mutation for per-
sisting a change to data, and subscription to request a live feed of data. We’ll get
into those later.

We’ve been using a simplified way of typing up a query operation, which just
uses an outer set of curly braces ({}) to demarcate where it starts and ends:

{
menuItems { name }

}

GraphQL assumes that if you’re providing a single operation like this, its
operation type is query. The previous example is equivalent to this, where we
explicitly mark the operation as a query:

query {
menuItems { name }

}

In simple cases, we omit the operation type, but when we’re using variables,
we need to use the more formal, verbose syntax and fully declare the operation.
This gives us a place to list and describe the variables that we’ll be using in
the operation. Let’s declare a variable for use in our menu item search query.

Naming Operations

You can also provide a name for operations, which can be useful
for identifying them in server logs. The name is provided after the
operation type—for instance, queryMenuItemList { ... }. You’ll see named
operations later in the book.

• Click HERE to purchase this book now. discuss

Providing Field Argument Values • 11

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

Declaring Variables

Here’s our menu items query operation with a definition for a variable we’ll
be using, $term, and then its use for the matching argument:

query ($term: String) {
menuItems(matching: $term) {

name
}

}

Variable declarations are provided directly before the curly braces that start
the body of an operation, and are placed inside a set of parentheses. Variable
names start with a dollar sign ($), and their GraphQL types follow after a
colon (:) and a space character. If we were declaring multiple variables, we’d
list them separated by commas.

The variable’s GraphQL type isn’t the snake_cased form as declared in our
schema. As you discovered in the previous chapter, Absinthe uses snake_cased
atom identifiers for GraphQL types (like :string) so that our Elixir code feels
idiomatic. In GraphQL documents, however, we need to use the canonical
GraphQL type names (like String), which are CamelCased. (If you’re ever unsure
of the canonical name for a built-in GraphQL type and how they map to
Absinthe types, take a peek at Appendix 1, GraphQL Types, on page ?, where
we’ve laid them all out for you.)

We used the String type for our $term variable, since that’s exactly the type of
argument value that we defined for the matching argument in our schema.

Variable Types Aren’t Extraneous

While it might seem like having to declare an argument type and
a variable type (that will be used for that argument) is overkill, it
allows the GraphQL server to give clearer error messages about
the expected vs. provided variable value and lets the GraphQL
document writer make values mandatory to support client-side
validation.

Of course, if you’ve taken the time and effort to declare a variable and sprinkle
its values throughout a document, you probably want to know how to provide
values for it.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/wwgraphql
http://forums.pragprog.com/forums/wwgraphql

